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that the interval of lower biomass burning in the Americas 
between ~ ad 1500 and 1750 is parsimoniously explained by the 
CCH.

Regional patterns of biomass burning, climate 
change, and population in the Americas

Analysis of regional 2-kyr charcoal series (Figures 4 and 6) across 
the Americas allows further consideration of the relative merits of 
the two hypotheses. If the PCH is correct, one would predict that 
the highest amplitude, and earliest, post-contact charcoal decline 
would have occurred in tropical Middle America (MA), where 
indigenous populations were highest (Denevan, 1992; Goldwijk 
et al., 2010) (Figures 2 and 4) and where their collapse through 
introduction of European diseases (Denevan, 1992) first began. 
Conversely, middle-to-high latitude regions would be expected to 
have experienced relatively more subtle, and later, post-contact 
declines in biomass burning because of their relatively lower pop-
ulation densities (Figures 2 and 4) and later arrival of European 
diseases. However, our results do not show this. Instead we find 
that sparsely populated (Denevan, 1992; Goldwijk et al., 2010) 
southern South America (SSA) experienced a major decline in 
biomass burning, commencing sharply at ad 1550, and of compa-
rable magnitude to that of MA. Furthermore, the charcoal decline 
in MA began at ~ ad 1350, preceding European contact by 150 
years (Figures 4d and 6). Similarly, in western North America 
(WNA), the onset of the charcoal decline also preceded European 
contact, beginning at ~ad 1450 (Figures 4c and 6, see also Marlon 
et al., 2012). The charcoal curve for tropical South America 
(TSA) also does not conform to the predictions of the PCH. 

Instead of a major downturn, there was only a subtle decline in 
biomass burning in TSA, which did not begin until ad 1700, c. 
200 years after European contact (Figures 4e and 6).

Despite this inter-regional variability in the initial onset, and 
magnitude, of charcoal declines, our data show a consistent post-
ad 1500 charcoal minimum across the Americas, centered 
between AD 1600 and 1750, that correlates with the height of the 
LIA (Figures 3 and 6), suggesting a regional- to hemispheric-
scale climatic explanation for this charcoal minimum. The cli-
matic expression of the LIA across the Americas (Figure 4), 
however, is heterogeneous, not only in terms of cooling intensity 
(relatively greater in the mid-high latitudes; Mann et al., 2009; 
Mooney et al., 2011), but also precipitation, which, for example, 
decreases in MA (Figure 4d) but increases in Patagonia (Mayr et 
al., 2005; Meyer and Wagner, 2009; Moy et al., 2008).

The spatial-temporal variability in LIA climate change, 
together with large-scale differences in vegetation type, fuel load 
and flammability, and indigenous population density (Figure 2), 
undoubtedly caused regional variations in biomass burning across 
the Americas. The low pre-Columbian population densities in 
high latitudes, including the northeast deciduous/boreal forest 
(NDB) and Patagonia (SSA) (Denevan, 1992; Goldwijk et al., 
2010), is inconsistent with the PCH as an explanation for the 
high-amplitude steep charcoal declines there (Figures 4a,f and 6). 
Correlation between temperature and charcoal minima for NDB 
between ad 1600 and 1800 (Figure 4a) suggests that cooler tem-
peratures reduced fuel flammability, and possibly also lowered 
the prevalence of lightning (an important ignition source in boreal 
forests today (Food and Agriculture Organization (FAO), 2007), 
and thereby decreased biomass burning then. In SSA the charcoal 

(Continued)
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minimum between ad 1600 and 1800 correlates more closely with 
peak precipitation than lowered temperature (Figure 4f; Mayr et 
al., 2005; Meyer and Wagner, 2009; Moy et al., 2008), which also 
would have reduced fuel flammability, and thereby suppressed 
biomass burning. The similarity among decreasing Greenland 
LIA temperatures and western US tree-ring-inferred temperatures 
and decreasing biomass burning across temperate North America 
(WNA and the Plains/SE USA (PSE)) (Figure 4b,c) also supports 
the LIA CCH.

The differing patterns of charcoal decline between tropical 
MA versus TSA are intriguing. In MA the charcoal decline began 
well before European contact and correlates well with the LIA 
declines in both temperature (Mann et al., 2009) and precipitation 
(Figure 4d), providing stronger support for the CCH than the 
PCH. The precipitation decline in MA (Cariaco record, Haug  
et al., 2001) correlates with a decrease in biomass burning, sug-
gesting that a prolonged reduction in rainfall would have limited 
fuel availability in drier tropical ecosystems (Archibald et al., 
2009). The Caribbean Cariaco record may not adequately capture 
the spatial complexity of climate across MA or LIA cooling, 

considering that fire is most common in tropical systems with 
intermediate levels of fuel loads and precipitation. A more detailed 
study of MA records, at higher spatio-temporal resolution, encom-
passing differences in vegetation, topography, and climate, is 
needed to explore the relationship between LIA climate change 
and biomass burning in this region of the Americas.

The relative importance of the LIA versus the PCH in explain-
ing the charcoal decline in TSA is less clear than in MA because 
there is only a minor post-ad 1500 charcoal decline in TSA, 
beginning c. ad 1700 (Figures 4e and 6), which significantly post-
dates both the onset of the LIA in the region as well as the post-
contact population collapse (Denevan, 1992) (Figure 4e). 
Therefore, neither climate change nor demographic collapse had 
a strong influence on post-ad 1500 biomass burning in TSA. The 
absence of a clear driver for the TSA biomass-burning signal may 
reflect the large seasonal and interannual variations in climate, 
vegetation and topography across this vast region – encompassing 
humid rainforest, cloud forest, seasonally dry forest, savannas, 
and paramo, and climatic regimes from ever-wet to arid and low-
land tropical to alpine. Today, climatic phenomena such as the El 

Figure 4. 2-kyr composite time-series of 100-year smoothed Z-score charcoal anomalies from six constituent regions (Figure 2) of the Americas. 
Geographic headings for the selected regions of the Americas include: (a) Northeast deciduous and Boreal region, (b) Plains and southeastern 
USA, (c) Western North America, (d) Middle America, (e) tropical South America, and (f) southern South America, and are presented with climate 
and population data. The upper and lower 95% confidence intervals are shown in gray and the number of charcoal samples contributing to each 
overlapping 100-year window in the bootstrap analysis is shown below each regional composite charcoal time series. Each regional biomass-
burning composite is plotted against 100-year smoothed, regionally averaged, climate and human population data. Regionally summarized Hyde 
3.1 (Goldwijk et al., 2010) population data, providing an aerially averaged estimate of population per region, are shown at the bottom of each 
regional panel. Climate reconstructions are aerially averaged paleotemperature reconstructions used in Mann et al. (2009). Proximal paleoclimate 
proxies of temperature and moisture variability from previously published studies are also shown for each region: Greenland Ice Sheet Project 
2 (GISP2: Stuiver et al., 1997), Greenland summit ice-core δ18O (NGRIP, 2006), western North America tree-ring based temperatures (Jones and 
Mann, 2004), Cariaco basin titanium concentrations (as a proxy for precipitation) (Haug et al., 2001), and Quelccaya ice-core δ18O (Thompson 
et al., 1985).

Figure 4. Continued
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Figure 5. 10-kyr composite time-series of 150-year smoothed Z-score charcoal anomalies (CHAR) from all charcoal records in the Americas. 
The upper and lower 95% confidence intervals are shown in gray and the dashed horizontal line marks the 17th century LIA biomass-burning 
minima, the largest negative Z-score charcoal anomaly during the past six millennia.

Figure 6. 2-kyr composite series of 100-year smoothed Z-score charcoal anomalies (CHAR) from five constituent regions (Figure 2) of the 
Americas. The LIA, as defined by (Mann et al., 2009), is shown by the vertical blue bar; the biomass-burning minima for the entire Americas, 
centered ~ ad 1600–1750, is shown as a gray box.
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Niño Southern Oscillation (ENSO) have markedly spatially het-
erogeneous impacts in terms of precipitation across TSA (drought 
in some areas, increased rainfall in others) (Garreaud et al., 2009; 
Nepstad et al., 2004), in which case the LIA may well have also 
had different climatic impacts across the region. Furthermore, 
even under the same directional shift in precipitation, different 
vegetation types across TSA may have had opposite responses in 
terms of the amount of biomass burnt – e.g. an increase in dry 
season precipitation causing an increase in biomass burnt in mois-
ture-limited savanna and caatinga (cactus thorn-scrub) as fuel 
load increases, but decreases in biomass burnt in seasonally dry 
forest as flammability decreases (Archibald et al., 2009; Nepstad 
et al., 2004).

Even at the local scale, Bush et al. (2007) found that neighbor-
ing sites, within a few kilometers of each other, can yield mark-
edly different charcoal time-series. However, given that these 
lakes in the Peruvian Amazon have the same climatic regime, 
soils, and vegetation type (humid rainforest), variability in bio-
mass burning was interpreted, not as climate-driven, but reflect-
ing highly localized patterns of pre-Columbian anthropogenic 
rainforest burning (Bush et al., 2007).

Conclusions
We conclude that, although there are regional differences in the 
timing and pattern of biomass burning trends, there is a broadly 
consistent post-ad 1500 decrease in biomass burning across the 
Americas, which is most consistent with LIA climate change as 
the predominant driver or first order control at a regional to hemi-
spheric scale. This implies that pre-Columbian indigenous peo-
ples did not exert as strong an influence upon large-scale biomass 
burning as previously supposed. However, our findings do not 
preclude the possibility that post-contact population collapse may 
have been a more important control at smaller/finer spatial scales 
(e.g. evident from tight clusters of lakes in Peruvian Amazonia, 
Bush et al., 2007), or that the magnitude of the post-ad 1500 char-
coal decline, especially in the densely populated tropics (MA) 
(Denevan, 1992), may have been amplified by the impact of post-
contact population collapse. Our findings also show that the 16th-
century downturn in biomass burning was not unique to the 
Americas, but was a global phenomenon that was underway well 
before AD 1500. Consequently, the minima in ice-core trace-gas 
indicators of biomass burning, and in atmospheric carbon dioxide 
concentrations, after AD 1500 should not be attributed to post-
contact decreases in anthropogenic biomass burning and conse-
quent increases in carbon sequestration in the Americas.
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